

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 5135-5137

Tetrahedron Letters

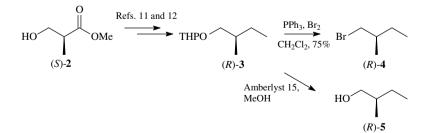
Synthesis of (4R, 8R)- and (4S, 8R)-4,8-dimethyldecanal: the common aggregation pheromone of flour beetles

Ellen M. Santangelo,^a Arlene G. Corrêa^a and Paulo H. G. Zarbin^{b,*}

^aDepartamento de Química, Universidade Federal do Paraná, CP 19081, CEP 81531-990 Curitiba-PR, Brazil ^bDepartamento de Química, Universidade Federal de São Carlos, CEP 13565-905 São Carlos-SP, Brazil

> Received 20 April 2006; revised 10 May 2006; accepted 11 May 2006 Available online 6 June 2006

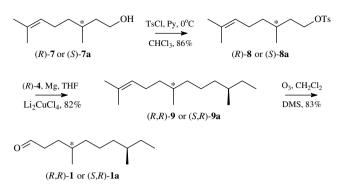
Abstract—The synthesis of (4R,8R)- and (4S,8R)-4,8-dimethyldecanal 1 and 1a has been achieved connecting the chiral building block (R)-2-methyl-1-bromobutane 4 with (R)- and (S)-citronellol derivatives. The key intermediate 4 was obtained optically pure in five steps from methyl (S)-3-hydroxy-2-methylpropionate 2. © 2006 Elsevier Ltd. All rights reserved.


The aggregation pheromone of the stored foodstuffs pests *Tribolium castaneum* and *Tribolium confusum* was isolated and identified by Suzuki as 4,8-dimethyldecanal 1.¹ Mori and co-workers² developed the first total synthesis of all of the four possible isomers of 1, stabilising the absolute configuration of the natural pheromone as (4R,8R)-1. Later, bioassays had shown that a mixture of the isomers (4R,8R) and (4R,8S), in a ratio of 8:2, was about 10 times more active than (4R,8R) itself.³

We have previously reported a versatile approach to the synthesis of the isomers (4R,8S)- and (4S,8S)-1,⁴ and several other racemic and stereoselective synthesis have been published since the identification of this pheromone.^{5–10}

Here we are describing the synthesis of two other isomers, (4R,8R)-1 and (4S,8R)-1a. In this approach, the

compound (R)-2-methyl-1-bromobutane **4** was employed as a chiral source to connect with the tosylates **8** and **8a**, derivate from (R)- and (S)-citronellol, respectively. This key intermediate **4** was synthesized optically pure from methyl (S)-3-hydroxy-2-methylpropionate **2** (see Schemes 1 and 2).


The (*R*)-2-methyl-1-(2-tetrahydropyranyloxy)butane **3** was readily obtained from **2** as previously described.^{11,12} Compound **3** was converted into its corresponding bromine **4** using triphenylphosphine and bromine,¹³ in 75% yield. In order to verify the enantiomeric excess of **4**, due to its high volatility, the measures were made preparing the Mosher ester of the corresponding synthetic alcohol (*R*)-2-methyl-1-butanol **5**, which was readily obtained from deprotection of **3** in methanol, using Amberlyst[®] 15 as catalyst¹⁴ (Scheme 1).

Scheme 1. Synthesis of the key intermediate (*R*)-4.

* Corresponding author. Tel.: +55 41 3361 3174; fax: +55 41 3361 3186; e-mail: pzarbin@quimica.ufpr.br

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.05.066

Scheme 2. Synthesis of the pheromone 1 and 1a.

Mosher ester derivatives **6**, **6a** and **6b** were prepared by the reaction of (S)-(+)- α -methoxy- α -(trifluoromethyl) phenyl acetic acid (MTPA) chloride with the racemic, (S)- and (R)-2-methyl-1-butanol **5**, respectively.^{15,16} The resulting esters were analyzed by ¹H NMR spectroscopy, as shown in Figure 1.

The ester (2'R/S,2R)-6 showed a multiplet (two double doublets and a doublet) between 4.04 and 4.30 ppm, corresponding to the carbinolic hydrogens. The ester (2'S,2R)-6a showed a single doublet at 4.16 ppm, while the ester (2'R,2R)-6b showed two double doublets, at 4.09 and 4.24 ppm, respectively (Fig. 1).

A comparative analysis of the signals at these spectrum region indicated that (R)-3 was obtained in high enantiomeric excess (>99%). Considering that no racemization takes place during the conversion of 3 into its bromine 4, the compound (R)-4 should also appear with the same ee.

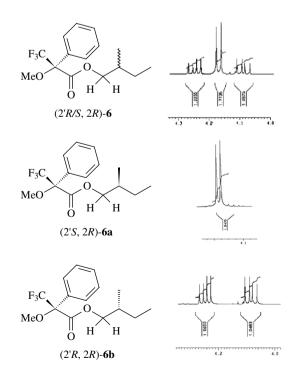


Figure 1.

The synthesis of (R,R)-1 and (S,R)-1a could then be finished, as described in Scheme 2. (R)-Citronellol 7 (Aldrich, 97% ee) and (S)-7a (Aldrich, 67% ee) were transformed into the known tosylates 8 and 8a¹⁷ in 86% yield. Coupling of these compounds with a Grignard reagent prepared from (R)-2-methyl-1-bromobutane 4, using Li₂CuCl₄ as catalyst,¹⁸ yielded the hydrocarbons 9 and 9a in 82%.¹⁹ Compounds 9 and 9a were submitted to ozonolysis in methanol–dichloromethane at -78 °C, followed by treatment with DMS,²⁰ affording the desired pheromones (4R,8R)-1 and (4S,8R)-1a, respectively,²¹ in 83% yield.

In summary, two isomers of 4,8-dimethyldecanal were readily synthesized in good yields and enantiomeric purity [(4*R*,8*R*)-1, $[\alpha]_D - 7.12$ (*c* 9.15, CHCl₃), lit.:^{2,22} $[\alpha]_D - 7.37$ (*c* 2.04, CHCl₃); (4*S*,8*R*)-1a, $[\alpha]_D - 7.85$ (*c* 8.10, CHCl₃), lit.:^{2,22} $[\alpha]_D - 9.92$ (*c* 2.51, CHCl₃)] and, in addition with our previous work,⁴ we have synthesized all of the four possible stereoisomers of pheromone 1. The difference observed on the value of the optical rotation among our synthetic (4*S*,8*R*)-1a and the one reported in the literature is due to the low enantiomeric enrichment of (*S*)-citronellol **6a**, used as starting material.

Acknowledgements

This work was supported by the International Foundation for Science (Sweden), Organization for Prohibition of Chemical Weapons (Netherlands), CNPq and Fundação Araucária (Brazil).

References and notes

- (a) Suzuki, T. Agric. Biol. Chem. 1981, 45, 1357–1363;
 (b) Suzuki, T. Agric. Biol. Chem. 1981, 45, 2641–2643.
- 2. Mori, K.; Kuwahara, S.; Ueda, H. Tetrahedron 1983, 39, 2439–2444.
- Suzuki, T.; Kozaki, J.; Sugawara, R.; Mori, K. Appl. Entomol. Zool. 1984, 19, 15.
- 4. Zarbin, P. H. G.; Cruz, W. O.; Ferreira, J. T. B. J. Braz. Chem. Soc. 1998, 9, 511–513.
- For a parcial review see: Mori, K. In *The Synthesis of Insect Pheromones*. In *The Total Synthesis of Natural Products*; ApSimon, J., Ed.; John Wiley & Sons: New York, 1992; Vol. 9.
- Moiseenkov, A. M.; Cheskis, B. Dokl. Akad. Nauk SSSR 1986, 290, 1379–1383.
- Fuganti, C.; Grasselli, P.; Servi, S.; Högberg, H.-E. J. Chem. Soc., Perkin Trans. 1 1988, 12, 3061–3065.
- 8. Chenevert, R.; Desjardins, M. J. Org. Chem. 1996, 61, 1219-1222.
- 9. Sankaranarayanan, S.; Sharma, A.; Chattopadhyay, S. *Tetrahedron: Asymmetry* **2002**, *13*, 1373–1378.
- Ismuratov, G. Y.; Yakovleva, M. P.; Galyautdinova, A. V.; Tolstikov, G. A. *Chem. Nat. Compd.* 2003, *39*, 31–33.
- (a) Mori, K. *Tetrahedron* **1983**, *39*, 3107; (b) Mori, K.; Takikawa, H. *Liebigs Ann. Chem.* **1991**, 497–500.
- Santangelo, E. M.; Zarbin, P. H. G.; Cass, Q. B.; Ferreira, J. T. B.; Correa, A. G. Synth. Commun. 2001, 31, 3685– 3698.

- 13. Typical procedure: To a stirred suspension of $PH_3P\cdotBr_2$ (16.5 mmol) in dry CH_2Cl_2 (80 mL) was added a solution of the tetrahydropyranyl ether **3** (2.58 g, 15 mmol) in dry $CH_2Cl_2(10 \text{ mL})$. After the yellow solution had been stirred at room temperature for 30 min, it was washed with water (2 × 40 mL) and the organic layer was separated and dried (MgSO₄). Removal of the solvent followed by flash chromatography of the residual oil in silica gel, provided 1.7 g (75% yield) of compound **4**. ¹H NMR (400 MHz, CDCl₃) δ : 0.91 (t, J = 7.4 Hz, 3H); 1.01 (d, J = 7.4 Hz, 3H); 1.20–1.35 (m, 1H); 1.39–1.56 (m, 1H); 1.67–1.77 (m, 1H); 3.29–3.45 (m, 2H).
- 14. Typical procedure: Amberlyst[®] 15 (0.14 g) was added to a solution of 3 (0.8 g; 4.65 mmol) in methanol (9.3 mL). The mixture was stirred at 45 °C for 1 h, then the resin was filtered and the solution was concentrated by fractionated distillation at 1 atm, due to the volatility of product. GC analysis of the crude product showed 100% conversion to the desired alcohol 5, which was employed directly in the next step without further purification.
- 15. Shi, X. W.; Leal, W. S.; Meinwald, J. *Bioorg. Med. Chem.* **1996**, *4*, 297–303.

- 16. The racemic- and (S)-5 are commercial available (Aldrich).
- 17. Mori, K.; Wu, J. Liebigs Ann. Chem. 1991, 783-788.
- Fouquet, G.; Schlosser, M. Angew Chem., Int. Ed. Engl. 1974, 86, 50–51.
- Zarbin, P. H. G.; Reckziegel, A.; Plass, E.; Francke, W. J. Chem. Ecol. 2000, 26, 2737–2746.
- 20. Chan, T.; Xin, Y. J. Org. Chem. 1997, 62, 3500-3504.
- 21. Anal. Calcd for C₁₂H₂₄O: C 78.20; H 13.12. Found: (4*R*,8*R*)-1: C, 78.29; H, 13.19; (4*S*,8*R*)-1a: C, 78.14; H, 13.07. (4*S*,8*R*)-1a: IR (v_{max} film cm⁻¹): 2927, 2718, 1727, 1462, 1381, 1126; ¹H NMR (400 MHz, CDCl₃) δ : 0.84 (d, J = 6.4 Hz, 3H); 0.85 (t, J = 6.8 Hz, 3H); 0.88 (d, J = 6.4 Hz, 3H); 1.04–1.14 (m, 3H); 1.20–1.35 (m, 5H); 1.42–1.46 (m, 2H); 1.63–1.69 (m, 2H); 2.40–2.46 (m, 2H); 9.77 (t, J = 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 11.4; 19.2; 19.4; 24.4; 28.9; 29.4; 32.4; 34.4; 36.8; 37.0; 41.2; 203.0; GC–MS (70 eV) m/z %: 140 (M⁺–44, 4.05), 125 (3.28), 111 (10.09), 85 (28.74), 70 (57.00), 57 (81.00), 43 (100).
- 22. Levinson, H. Z.; Mori, K. Naturwissenschaften 1983, 70, 190–192.